RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [BATCH 2018-21] B.A./B.Sc. SECOND SEMESTER (January – June) 2019 Mid-Semester Examination, March 2019

Date : 26/03/2019 Time : 11 am - 12 noon COMPUTER SCIENCE (General)

Paper : II

Full Marks : 25

[Use a separate Answer Book <u>for each group</u>]

$\underline{Group-A}$

	Answer any one question :				
1.	1. a) Let A be a two-dimensional array declared as follows:				
	A : array [110][115] of integer,				
	Assume that each integer takes one memory locations. The array is stored in row-major order and the first element of the array is stored at location 100, what is the address of the element A[i][j]? [1.5]				
	b) The following sequence of operations is performed on stack:				
	PUSH (10), PUSH (20), POP, PUSH (10), PUSH (20), POP, POP, POP, PUSH (20), POP. What is the sequence of the popped out values?				
2.	a) What is the postfix expression for the following infix expression?	[2]			
	A + B * (C + D) / F + D * E				
	b) Define Linked-List.	[.5]			
	Answer any two questions : [2×5]				
3.	a) Write an algorithm to reverse a Singly Linked-List.	[3]			
	b) What are the advantages of circular queue over linear queue.	[2]			
4.	a) Write an algorithm to delete the last node of a Singly Linked-List.	[3]			
	b) Write an algorithm of the PUSH operation onto a stack.	[2]			
5.	a) Define data structure.	[1]			
	b) Write an algorithm of Binary Search operation.	[4]			
<u>Group – B</u>					
	Answer <u>any one</u> question :	[1×2.5]			
6.	6. Explain the differences between message passing and shared memory as inter process communication techniques . [2.5]				
7.	Explain race condition with example.	[2.5]			
	Answer any two questions : [2×5]				
8.	Explain how producer-consumer problem can be solved using semaphore. [5]				
9.	a) 'Deadlock is a probabilistic event'— Justify.	[2]			

10. An operating system uses pre-emptive SJF scheduling algorithm. Consider the following arrival times and CPU execution times for the following process.

Process	Arrival Time (ms)	CPU Execution Time (ms)
P1	0	8
P2	1	4
P3	2	9
P4	3	5

Show Gantt chart and calculate total waiting time for process P₁.

[5]

_____ × _____